Investigation of Possibility of Suspended Sediment Prediction Using a Combination of Sediment Rating Curve and Artificial Neural Network Case Study: Ghatorchai River, Yazdakan Bridge

author

Abstract:

Estimation of sediment loads in rivers is one of the most important, difficult components of sediment transport studies and river engineering. Accessing new methods that can be effective in this background are more important. In this research, we have used the artificial neural network (ANN) to optimize the results of the sediment rating curve (SRC) to predict the suspended sediment loads. For doing that, the Yadakan station on Ghatoor-Chai River was considered. An equation by SRC method was obtained followed by an ANN method by the same data, and finally by combining them, we built a new model. It should be mentioned that before using the combined model, each method was used and the obtained results were compared with the observed data. Based on this research, the results of using the combined model were more precise than the ANN and SRC separately as the Dr value from 1. 402 (in SRC) and -2. 395 (in ANN) changed to 0. 963 in the combined model. The RMSE has also obtained 692.286 and 616.96 for SRC and ANN, respectively, whereas this value decreased to 603.094 for the combined model.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Optimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network

Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...

full text

Estimating Suspended Sediment by Artificial Neural Network (ANN), Decision Trees (DT) and Sediment Rating Curve (SRC) Models (Case study: Lorestan Province, Iran)

The aim of this study was to estimate suspended sediment by the ANN model, DT with CART algorithm and different types of SRC, in ten stations from the Lorestan Province of Iran. The results showed that the accuracy of ANN with Levenberg-Marquardt back propagation algorithm is more than the two other models, especially in high discharges. Comparison of different intervals in models showed that r...

full text

estimation suspended sediment load with sediment rating curve and artificial neural network method (case study: lorestan province)

suspended sediment estimation is an important factor from different aspects including, farming, soil conservation, dams, aquatic life, as well as various aspects of the research. there are different methods for suspended sediment estimation. this study aims to estimate suspended sediment using feed forward neural network with error back propagation with levenberg-marquardt back propagation algo...

full text

Investigation of Temporal Phenomena of Sediment Rating Curve and comparison of it with the Some Statistical Methods for Estimating Suspended Sediment Load (Case study: Gamasiab Watershed)

The variable and complex nature of the sediment load of rivers has led that the estimation of sediment entering the reservoirs and the production of long term sediment, for determining the lifetime of the structures encounter with the problem. Application of sediment rating curves is one of the most common methods for estimating the suspended sediment load of rivers. Regardless of the accuracy ...

full text

Applying Artificial Neural Network Algorithms to Estimate Suspended Sediment Load (Case Study: Kasilian Catchment, Iran)

Estimate of sediment load is required in a wide spectrum of water resources engineering problems. The nonlinear nature of suspended sediment load series necessitates the utilization of nonlinear methods to simulate the suspended sediment load. In this study Artificial Neural Networks (ANNs) are employed to estimate daily suspended sediment load. Two different ANN algorithms, Multi Layer Perce...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 1

pages  73- 82

publication date 2013-06

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023